A MODEL FOR PREDICTION OF DRUG RESISTANT TUBERCULOSIS USING DATA MINING TECHNIQUE
DOI:
https://doi.org/10.51594/csitrj.v3i1.290Abstract
The rate of mortality in the recent time because of tuberculosis disease is so alarming. Drug-Resistant Tuberculosis is a communicable disease very dangerous that attack lungs, many victims were not identified due to weak health systems facilities, poor doctor-patient relationship, and inefficient mechanisms for predicting of the disease. Data mining can be applied on medical data to foresee novel, useful and potential knowledge that can save a life, reduce treatment cost, increases diagnostic and prediction accuracy as well as delay taking during prediction which reduce the treatment cost of a patience. Several data mining technique such as classification, clustering, regression, and association rule were used to enhance the prediction of tuberculosis. In this project I used Naïve Bayes Classifier to design a model for predicting tuberculosis. I considered the following parameters; Gender, Chills, Fever, Night sweat, Fatigue, Cough with Blood, Weight loss, and Loss of Appetite for classification phase 1. While Gender Chest Pain, Sputum, Contact DR, Weight Loss, In-adequate treatment for classification phase 2 as the clinical symptom. The Naïve Bayes Classifier has the advantage of attribute independency, it is easy in construction, can classify categorical data, and can work on high dimensional data effectively. The model designed using Naïve Bayes Classifier is divided o into classification phase 1 and classification phase 2 and implemented using Phython 3.2 Programing Language. The result shows that Naïve Bayes Classfier was suitable in predicting drug resistant tuberculosis with performance accuracy of 82%, 98% and area under curve (AUC) is 88%.
Keywords: Model Prediction, Tuberculosis. Drug, Resistant, Data Mining.
Published
Issue
Section
Copyright (c) 2022 Abdullahi Halliru, Gregory Msksha Wajiga, Yusuf Musa Malgwi, Abba Hamman Maidabara

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Fair East Publishing has chosen to apply for the Creative Common Attribution Noncommercial 4.0 Licence (CC BY) license on our published work. Authors who wish to publish their manuscript in our journal agree on the following terms:1. Authors retain the copyright and grant us (Fair East Publishing and its subsidiary journals) the right for first publication with the work licensed under a Creative Commons Attribution (CC BY) License which permits others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal. Under this license, author retains the ownership of the copyright of their content, but anyone is allowed to download, reuse, reprint, modify, distribute, and/or copy the contents as long as the original authors and source are cited. No permission is required from the publishers or authors.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (for example, publishing it as a book or submitting it to an institutional repository), with an acknowledgment of its initial publication in Fair East Publishing owned journals.
3. We encourage our authors/contributors to post their work online (such as posting it on their website or some institutional repositories) prior to and during the submission process since it produces scholarly exchange and greater and earlier citation of published work.